Starch metabolism, biosynthesis and chemistry

 

Publications

207. Cell wall degradation is required for normal starch mobilisation in barley endosperm.
Andriotis, V. M. E.; Rejzek, M.; Barclay, E.; Rugen, M. D.; Field, R. A.; A.M., S.
Sci. Rep. 2016,, under revision.

207. Cell wall degradation is required for normal starch mobilisation in barley endosperm
Andriotis, V. M. E.; Rejzek, M.; Barclay, E.; Rugen, M. D.; Field, R. A.; A.M., S.
Sci. Rep. 2016, 6, 33215
[Full text]

201. The maltase involved in starch metabolism in barley endosperm is encoded by a single gene.
Andriotis, V. M.; Saalbach, G.; Waugh, R.; Field, R. A.; Smith, A. M.
PLoS One 2016, 11, e0151642.

200. Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism.
Andriotis, V. M.; Rejzek, M.; Rugen, M. D.; Svensson, B.; Smith, A. M.; Field, R. A.
Biochem. Soc. Trans. 2016, 44, 159-65.

198. Structural dissection of the maltodextrin disproportionation cycle of the arabidopsis plastidial disproportionating enzyme 1 (DPE1).
O'Neill, E. C.; Stevenson, C. E.; Tantanarat, K.; Latousakis, D.; Donaldson, M. I.; Rejzek, M.; Nepogodiev, S. A.; Limpaseni, T.; Field, R. A.; Lawson, D. M.
J. Biol. Chem. 2015, 290, 29834-53.

195. Underpinning starch biology with in vitro studies on carbohydrate-active enzymes and biosynthetic glycomaterials.
O'Neill, E. C.; Field, R. A.
Front. Bioeng. Biotechnol. 2015, 3, 136.

192. Analysis of surface binding sites (SBS) within GH62, GH13 and GH77.
Wilkens, C.; Cockburn, D.; Andersen, S.; Petersen, B. O.; Ruzanski, C.; Field, R. A.; Hindsgaul, O.; Nakai, N.; McCleary, B.; M. Smith, A. M.; Abou Hachem, M.; Svensson, B.
J. Appl. Glycosci. 2015, 62, 87-93.

185. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77 - a mini-review.
Cockburn, D.; Wilkens, C.; Ruzanski, C.; Andersen, S.; Nielsen, J. W.; Smith, A. M.; Field, R. A.; Willemoes, M.; Abou Hachem, M.; Svensson, B.
Biologia 2014, 69, 705-712.

182. Sugar-coated sensor chip and nanoparticle surfaces for the in vitro enzymatic synthesis of starch-like materials.
O'Neill, E. C.; Rashid, A. M.; Stevenson, C. E. M.; Hetru, A. C.; Gunning, A. P.; Rejzek, M.; Nepogodiev, S. A.; Bornemann, S.; Lawson, D. M.; Field, R. A.
Chem. Sci. 2014, 5, 341-350.

180. A bacterial glucanotransferase can replace the complex maltose metabolism required for starch to sucrose conversion in leaves at night.
Ruzanski, C.; Smirnova, J.; Rejzek, M.; Cockburn, D.; Pedersen, H. L.; Pike, M.; Willats, W. G. T.; Svensson, B.; Steup, M.; Ebenhoh, O.; Smith, A. M.; Field, R. A.
J. Biol. Chem. 2013, 288, 28581-28598.

174. Flux through trehalose synthase flows from trehalose to the alpha anomer of maltose in mycobacteria.
Miah, F.; Koliwer-Brandl, H.; Rejzek, M.; Field, R. A.; Kalscheuer, R.; Bornemann, S.
Chem. Biol. 2013, 20, 487-493.

168. An expedient enzymatic route to isomeric 2-, 3- and 6-monodeoxy-monofluoro-maltose derivatives.
Tantanarat, K.; Rejzek, M.; O'Neill, E.; Ruzanski, C.; Hill, L.; Fairhurst, S. A.; Limpaseni, T.; Field, R. A.
Carbohydr. Res. 2012, 358, 12-18.

165. Structure of streptomyces maltosyltransferase GlgE, a homologue of a genetically validated anti-tuberculosis target.
Syson, K.; Stevenson, C. E. M.; Rejzek, M.; Fairhurst, S. A.; Nair, A.; Bruton, C. J.; Field, R. A.; Chater, K. F.; Lawson, D. M.; Bornemann, S.
J. Biol. Chem. 2011, 286, 38298-38310.

157. The role of α-glucosidase in germinating barley grains.
Stanley, D.; Rejzek, M.; Naested, H.; Smedley, M.; Otero, S.; Fahy, B.; Thorpe, F.; Nash, R. J.; Harwood, W.; Svensson, B.; Denyer, K.; Field, R. A.; Smith, A. M.
Plant Physiol. 2011, 155, 932-943.

155. Chemical genetics and cereal starch metabolism: structural basis of the non-covalent and covalent inhibition of barley β-amylase.
Rejzek, M.; Stevenson, C. E.; Southard, A. M.; Stanley, D.; Denyer, K.; Smith, A. M.; Naldrett, M. J.; Lawson, D. M.; Field, R. A.
Mol. Biosyst. 2011, 7, 718-730.

147. Peracetylated α-D-glucopyranosyl fluoride and peracetylated α-maltosyl fluoride.
Dedola, S.; Hughes, D. L.; Field, R. A.
Acta Cryst. C 2010, 66, O124-O127.

52. Synthesis of starch fragments.
Nepogodiev, S. A.; Field, R. A.; Damager, I.
In Progress in the Synthesis of Complex Carbohydrate Chains of Plant and Microbial Polysaccharides Nifantiev, N. E., Ed. Transworld Research Network: Kerala, 2009; pp 155-180.

20. Synthesis of triazole-linked pseudo-starch fragments.
Nepogodiev, S. A.; Dedola, S.; Marmuse, L.; de Oliveira, M. T.; Field, R. A.
Carbohydr. Res. 2007, 342, 529-540.

15. Exploiting an aromatic aglycone as a reporter of glycosylation stereochemistry in the synthesis of 1,6-linked maltooligosaccharides.
Marmuse, L.; Nepogodiev, S. A.; Field, R. A.
Tetrahedron: Asymmetry 2005, 16, 477-485.

11. "Click chemistry" en route to pseudo-starch.
Marmuse, L.; Nepogodiev, S. A.; Field, R. A.
Org. Biomol. Chem. 2005, 3, 2225-2227.